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SUMMARY

A computational study of the sinusoidally oscillating flow past a fixed circular cylinder has been
performed to examine the viscous transition from 2D to 3D in the wake of the cylinder, i.e., the Honji
instability. The primitive variables form of the Navier–Stokes equations was used with the discretization
in the form of a combined finite-difference/spectral-method. Numerical results were obtained at a
frequency parameter value of 196 and for a range of Keulegan–Carpenter (KC) numbers from 1 to 4.
The calculations agreed quite well with experimental results. At KC=1, the wake is 2D; spanwise
structures begin to appear at KC=2; separation has occurred by KC=3.2; and the vortex structures
have become chaotic by KC=4. Calculated values of the force coefficients also agree extremely well with
the experimental values. Copyright © 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

The flow in the wake of bluff body is 3D, even before it becomes turbulent, at low Reynolds
numbers. When the physical problem is an oscillating flow past a fixed circular cylinder, this
viscous transition from a 2D flow to a 3D flow is called the Honji instability. This
phenomenon was first observed by Honji [1]. Sarpkaya [2], in a penetrating study of the
problem, gave the name ‘Honji instability’ to this viscous transition.

The present study concerns the combined finite-difference/spectral-method calculation of the
Honji instability. Specifically, we represent this flow in terms of the 3D primitive-variables
form of the Navier–Stokes equations for an incompressible fluid. A fractional-step method is
used to advance the solution in time.

The Honji-instability problem has some similarities to the problem of a steady approach
flow past a fixed circular cylinder, about which much more is known. For the steady approach
flow, the 2D wake vortex structures are unstable to 3D disturbances at a Reynolds number of
about 189, where the wake becomes 3D before turbulence develops (see Barkley and Hender-
son [3]). The understanding of this problem is well-documented in Roshko [4], Hama [5],
Williamson [6,7], Thompson et al. [8] and numerous others.

For a circular cylinder in a sinusoidally oscillating flow, the governing parameters are the
Reynolds number, defined as Re=Umd/n, and the Keulegan–Carpenter number, defined as
KC=UmT/d, where Um is the maximum oscillatory velocity, n is the fluid kinematic viscosity,
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T is the period of oscillation and d is the cylinder diameter. A frequency parameter, defined as
b=d2/nT=Re/KC, is often used to replace the Reynolds number as the second parameter.
Sarpkaya [2] has given a detailed discussion of the phenomena associated with this oscillating
flow. A brief synopsis is that, at a given value of b, the flow goes through a series of different
flow regimes as KC changes. For a given value of b, the flow is 2D and laminar at low KC.
As KC increases, a viscous transition to a 3D wake occurs. The next regime, occurring with
an increase in the KC value, is that wake turbulence is generated. The final regime is identified
as one in which separation has occurred after further increases in KC. In particular, at
b=1035, we note from Figure 7 in [2] that the transition to a 3D wake (dubbed the Honji
instability by Sarpkaya) occurs at KC$1.1, separation occurs at KC$1.5 and transition to
turbulence at KC$1.9.

The Honji instability is a 3D vortical instability first discovered by Honji [1]. Honji’s
experiments showed that, when b is between 50 and 800, the flow becomes 3D when KC is
between 1.2 and 2.4. The critical value of KC for the flow to become unstable to 3D
disturbances, KCcr, shows a steeper decrease with increasing b, when b is less than 200. When
b exceeds 200, KCcr decreases more slowly. When KC is greater than KCcr, the streak sheets
form steady mushroom-like structures on the sides of the cylinder that are perpendicular to the
direction of oscillation. These structures have equal spacing along the axial direction, and lie
alternatively on the two sides. Honji also observed that, when KC is further increased to be
greater than a transitional KC number, KCt, the flow becomes turbulent due to long-standing
separation of the Stokes layer (the layer of high vorticity and gradients close to the wall of the
cylinder). For the range of b values considered, the difference between KCt and KCcr is
relatively invariant (between 0.9 and 1.2). Apparently, separation occurs after the Honji
instability, at a value of KC between KCcr and KCt.

Based on Honji’s observation that this instability may be a centrifugal-type instability, Hall
[9] assumed it is of the Taylor–Görtler-type, and made a linear stability analysis of the 2D
flow for the limiting case of very large b and very small KC. The analysis was further
simplified from the conclusion that the flow is most unstable at the points to which the radial
lines are perpendicular to the direction of oscillation. Finally, Hall was able to obtain a
relation between KCcr and b, which shows KCcr essentially decreases as b−1/4. This relation
agrees with KCcr obtained by Honji.

2. ANALYSIS

2.1. Go6erning equations

To describe the Honji-instability problem, i.e., the viscous transition from 2D to 3D in an
oscillating flow, we use the nondimensional versions of the continuity equation and the
Navier–Stokes equation:

9 ·v=0 (1)

and

1
2KC

(v
(t

+ (9×v)×v= −9F+
2

Re
92v, (2)

where v is the nondimensional velocity vector scaled by the maximum oscillatory velocity, Um;
t is the nondimensional time, t= t/T ; Re is the Reynolds number defined earlier; and
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F=2p/rUm
2 +v ·v/Um

2 . In the definition of F, p is the dimensional pressure and r is the
density. For the actual computational scheme, we use the cylindrical forms of Equations (1)
and (2).

The nondimensional initial conditions for this problem are

u(r, u, z, 0)=U(0)
�

1−
1
r2

�
cos u, (3)

y(r, u, z, 0)= −U(0)
�

1+
1
r2

�
sin u, (4)

and

w(r, u, z, 0)=0, (5)

where U(0) is found from the nondimensional free-stream velocity,

U(t)=Um sin(2pt) (6)

and u, y and w are the nondimensional velocity components in the r-, u- and z-directions
respectively.

The boundary conditions on the surface of the cylinder are

u(1, u, z, t)=y(1, u, z, t)=w(1, u, z, t)=0 (7)

on r=1, which is the cylinder surface in the nondimensional system. In the circumferential
direction, the natural periodic boundary conditions apply,

f(r, u, z, t)= f(r, u+2p, z, t), (8)

where the functional f( ) refers to all three velocity components and the pressure: u, y, w and
p. The boundary conditions in the axial direction are not as straightforward as in the other two
directions. We can use periodic conditions in this direction also,

f(r, u, z, t)= f(r, u, z+Z, t), (9)

where f( ) again refers to all three velocity components and Z is the spanwise wavelength.
However, the natural wavelength changes with flow conditions and is unknown, so some
judgments are necessary in determining this wavelength. This point will be discussed later. We
will also defer discussion of the far-field boundary conditions until after the numerical method
is presented.

3. THE NUMERICAL REPRESENTATION

Equations (1) and (2) are discretized using a finite-difference/spectral-method approach. Since
two of the co-ordinate directions have periodic boundary conditions, use of the Fourier
spectral method brings significantly reduced computational cost to this 3D problem.

3.1. Fractional-step method

The second-order in time fractional-step method is used for time advancement of Equation
(2). An intermediate velocity, v̂, is obtained from

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 19–42 (1999)



J. ZHANG AND C. DALTON22

1
2KC

v̂−vn

Dt
= −

1
2

(3Nn−Nn−1)+
1
2

Ln, (10)

where the superscripts refer to the time step, N represents the (nonlinear) convective terms and
L represents the (linear) viscous terms. The intermediate velocity is corrected by pressure to
obtain a second intermediate velocity, ṽ, from

1
2KC

ṽ− v̂
Dt

= −9Fn+1/2 (11)

and

Q0 =9 · ṽ=0. (12)

Finally, the velocity at time step n+1 is obtained from

1
2KC

vn+1− ṽ
Dt

=
1
2

Ln+1. (13)

In Equation (11), the pressure head, F, is unknown. To determine it, we apply the continuity
equation, which must be satisfied at the end of each complete time step. So, we take the
divergence of Equation (13) to get Equation (12).

Then, we take the divergence of Equation (11) and apply Equation (12) to get

92Fn+1/2=
1

2KC
9 · v̂
Dt

. (14)

After Fn+1/2 is found from Equation (14) and with the solution for v̂ from Equation (10), ṽ
and vn+1 can be calculated from Equations (11) and (13) respectively. No boundary conditions
are necessary for either of the two intermediate velocities.

The fractional-step method is an approximation which, in effect, linearizes Equation (2) by
evaluating the convective terms at times other than the time at the n+1 level. Adding
Equations (10), (11) and (13), which are the equations describing the individual steps of the
fractional-step method, yields

1
2KC

�vn+1−vn

Dt

�
= −9Fn+1/2−

1
2

(3Nn−Nn−1)+
1
2

(Ln+1+Ln). (15)

Equation (15) represents the advance in time from the n level to the n+1 level for the velocity
with the right-hand-side representing the pressure, convective and viscous terms at times less
than the n+1 level.

The divergence-free condition on vn+1 is not automatically satisfied; an extra step must be
taken to assure that 9 ·vn+1 is sufficiently small. So, we take the divergence of Equation (13)
and use Equation (12) to get

1
2KC

Qn+1

Dt
=

1
Re

92Qn+1, (16)

which shows that Qn+1 satisfies a numerical boundary layer equation [10]. The divergence
(Qn+1) is zero only if it is zero on the boundary, especially no-slip boundaries. If not, the
divergence will decrease with the normal distance from the boundary proportional to O((Dt/
Re)−1/2). The divergence in this numerical boundary can be O(Dt), whereas the divergence in
other parts of the flow field is of the order O(Dt2). This could lead to large divergences or
inaccurate solutions for some problems, especially if the solution for pressure needs to be
accurate near solid walls, such as when fluid forces are of interest. Therefore, careful attention
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must be paid to the value of Qn+1 and the time and space steps may have to be modified to
get acceptably low values of the divergence.

To control this time-splitting error, we use the consistent scheme developed by Karniadakis
et al. on boundary conditions for pressure on no-slip solid boundaries,

(F
(n

= −
2

Re
n ·9× (9×v), (17)

where n refers to the direction normal to the wall, and n is the unit normal vector. Karniadakis
et al. and related work showed that this ‘rotational’ boundary condition is superior to the
traditional boundary condition,

(F
(n

=
2

Re
n ·92v, (18)

in that it eliminates the first-order splitting error that Equation (18) introduces.

3.2. Fourier spectral-method

A combined Fourier spectral-method and finite-difference scheme are used to discretize the
governing equations since only the radial direction does not have periodic boundary condi-
tions. The three velocity components and the pressure can be expressed in general as functions
of time and space,

f(r, u, z, t)= %
L/2−1

l= −L/2

%
N/2−1

k= −N/2

fkl(r, t) eiku ei2plz/Z, (19)

where i=
−1, N and L are the number of collocation points in the circumferential and axial
directions respectively, and Z is the length of the computational domain in the axial direction.
In these formulae, the terms with l= −L/2 or k= −N/2 are present because of the fast
Fourier transform, which is used extensively in the solution process and requires an even
number of terms with which to work.

3.3. Transformed equations

In the radial direction, the co-ordinate transformation,

r=ej, (20)

is used to generate a finer physical mesh near the wall of the cylinder than further away from
it. From now on, the transformed equations and boundary conditions will be in the
transformed system of t, j and the Fourier coefficients. The equations to solve in this system
are

1
a

v̂kl−vkl
n

Dt
= −

1
2

(3Nkl
n −Nkl

n−1)+
1
2

Lkl
n , (21)

� 1
r2

(2

(j2−
k2

r2 −s2l2�Fkl
n+1/2=

(9·v̂)kl

aDt
, (22)

1
a

ṽkl− v̂kl

Dt
= −

�1
r
(

(j
er+ ikeu+ islez

�
Fkl

n+1/2 (23)

and
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1
a

vkl
n+1− ṽkl

Dt
=

1
2

Lkl
n+1, (24)

where −L/2+15 l5L/2−1, −N/2+15k5N/2−1, and er, eu and ez are the unit vectors
in the radial, circumferential and axial directions respectively.

The calculation of the nonlinear terms in Equation (21) is the most time-consuming part in
the computation. First, we need to calculate the Fourier coefficients of velocity and vorticity,
then obtain their physical values at the collocation points. The physical values of the nonlinear
terms are then obtained at these collocation points. Finally, they are transformed to the wave
space to give the Fourier coefficients of the nonlinear terms. The Poisson equation, which
usually takes most of the time in finite-difference formulations, is reduced to a system of
tridiagonal equations. The operation count for solving the Poisson equation is O(MNL), in
contrast to the operation count for the nonlinear terms, which is O(MNL log2 (NL)) when the
fast Fourier transform (FFT) is used. The rotational form of the convective terms is chosen
because of its stability features in spectral approximations. It also has an advantage over the
traditional form (v ·9v) in computational time. The rotational form needs a total of nine FFT
operations (one inverse FFT for each of u, 6, w, vr, vu and vz, one FFT for each component
of the nonlinear terms) per time step. The traditional form needs a total of 15 (one inverse
FFTS for each of the three velocity components and their nine derivatives and one FFT for
each of the components of the convective terms) per time step. The utilization of the rotational
form of the convective terms thus brings about a significant reduction in computational time.

3.4. Finite-difference scheme

In this study, we use a half-staggered grid, as shown in Figure 1. All of the vector
components are determined at the intersection of solid lines, whereas all of the scalars
(pressure, divergence, etc.) are defined on points that are the intersections of solid and dashed
lines. A half-staggered grid gives the best balance between different factors of concern in the
current study. We then have to find the pressure on the wall for the calculation of fluid forces
and velocity. Fortunately, the variation of pressure near solid walls is not as steep as that of
velocity. Thus, we use an extrapolation procedure, which is based on the pressure values in the
flow field and the pressure gradient on the wall, to obtain the wall pressure.

3.5. The pressure equation

For each pair of modes (k, l), the Poisson equation for pressure, Equation (15), or its
discrete form, Equation (22), becomes a tridiagonal algebraic equation. The Poisson equation
for F and the boundary conditions (which are a combination of the Neumann boundary
conditions and periodic boundary conditions) cannot uniquely determine F, which reflects the
lack of thermodynamic meaning of pressure in incompressible flows. In the numerical
implementation, the end row of the coefficient matrix of the system of algebraic equations is
reduced to all zeros by the forward sweep of the Thomas algorithm for the tridiagonal
equation when both k and l are zero. We set the arbitrary constant by setting the Fourier
coefficients of the mode k= l=0 at the end of the forward sweep (i=3/2 in our calculations
since the forward sweep is from the outer boundary to the wall of the cylinder) to zero.

3.6. Outflow boundary conditions

Boundary conditions for pressure at the outer boundary are not a trivial issue in the present
study, as they may influence the inner flow by the incompressible nature of the fluid.
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Development of appropriate boundary conditions for pressure and velocity at the outer
boundary, especially at outflow or mixed inflow–outflow boundaries, have been discussed by
many researchers, such as Sani and Gresho [11] and Mittal and Balachandar [12]. However,
because of the complexity of the problem and the large variation of flow conditions, no widely
applicable formulation of boundary conditions at numerically truncated boundaries (open
boundaries) is currently available.

The outflow boundary conditions for velocity should be such that the boundary condition
should not interfere with the possible outflow passage of vortices and also should not affect the
global properties of the flow, such as drag, lift and vortex shedding. For this oscillating flow
problem, it is tempting to say that the outer boundaries are sufficiently far from the cylinder
so that all of the vortices, i.e., those that exist from previous oscillations and those that are
being formed, do not approach the far-field boundary. However, there is no need to make this
assumption. We select conditions that will not deform the vortices as they either approach or
pass through the far-field boundary. Thus, we use the following conditions for oscillating
flows:

(2ukl

(r2 =
(ukl

(r
=0, (25)

(2ykl

(r2 =
(ykl

(r
=0 (26)

and

Figure 1. The half-staggered grid in a r, u plane. The grid system is the same on the r, u plane for each axial
collocation point. Vectors are defined at the intersections of solid lines, and scalars are defined on the intersections of

solid and dashed lines.
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(2wkl

(r2 =
(wkl

(r
=0. (27)

These are equivalent to

(2ukl

(j2 =
(2ykl

(j2 =
(2wkl

(j2 =0. (28)

Both u and y for k=1, l=0 are specified:

u1,0=u−1,0=U�((n+1)Dt)/2, (29)

y1,0= −y−1,0=U�((n+1)Dt)/2, (30)

where U� is the velocity from Equation (6) at r�. For these oscillating flows, the outflow
pressure boundary condition is determined from the radial derivative of the pressure as found
from the radial component of the momentum equation.

4. CALCULATION OF THE FORCE COEFFICIENTS

The fluid forces acting on the cylinder can be represented by contributions from pressure and
shear stress. Unlike the steady approach flow problem, the oscillating flow problem has a
significant time-dependent inline force component. Also, the transverse force time-dependency
in oscillating flows is quite different since the approach flow never has a constant velocity.
However, the inline and transverse forces can still be found from the same equations used in
steady flow:

Cf= −
1
Z
& z

0

& 2p

0

�
p cos u+

2
Re

vz sin u
�

r=1

du dz (31)

and

Ct= −
1
Z
& z

0

& 2p

0

�
p sin u−

2
Re

vz cos u
�

r=1

du dz, (32)

where Cf and Ct are the inline and transverse force coefficients respectively, Z is the cylinder
length, and p and vz are evaluated on the cylinder surface. Since both pressure and vorticity
are z-dependent, sectional values of both inline and transverse forces can be determined by
suppressing the z-integration in Equations (31) and (32) and using z-local distributions of p
and vz. In an oscillating flow, the drag and inertia coefficients, CD and CM, in the Morison
equation are determined by the Fourier integral method. The dimensionless Morison equation
for a sinusoidally oscillating flow is

CF=CD sin u �sin u �+CM

p2

KC
cos u. (33)

Equation (33) is multiplied by cos u and integrated to give

CM=
KC
p3

& 2p

0

cos u CF du. (34)

Then (33) is multiplied by sin u and integrated to give
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Figure 2. Axial vorticity on the wall of the cylinder for sinusoidally oscillating flow at KC=2 and b=196 with
different spatial resolutions. The outer boundary radius is r�=42.5 and the time step is Dt=0.002.

CD=
3
8
& 2p

0

sin u CF du. (35)

These coefficients will be discussed in the next section.

5. NUMERICAL RESULTS

To demonstrate the capability of the numerical method to calculate the Honji instability, we
set b at a value of 196 and let KC range from 1 to 4. The flow is expected to be 2D at the
lower end of the KC range and 3D at the upper end, with the viscous transition between 2D
and 3D occurring somewhere at about KC=1.75 [2].

5.1. Con6ergence and stability

Before discussing the range of calculations undertaken, we present the results of part of the
convergence and stability study. We will discuss the case of KC=2 and b=196. This situation
is expected to produce a 3D viscous flow, i.e., the Honji instability has occurred, but no
turbulence is present yet (see Sarpkaya [2]). We treat the convergence problem in two steps
because of the complexity of doing a full 3D convergence test. First, we consider the flow to
be 2D and determine the necessary grid for 2D convergence. Second, we take the grid for
which we got a 2D convergence and complete the convergence check by varying the number
of mesh points in the axial co-ordinate direction.

Four different mesh systems were examined in the 2D part of the study, as indicated in
Figure 2, which shows a plot of the surface vorticity distribution for each mesh system. The
vorticity distributions at the two finest mesh systems, 128×64 and 200×128, are virtually the
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Figure 3. Contour lines of circumferential vorticity at t=33 for sinusoidally oscillating flow at KC=2, b=196 with
r�=42.5, M=128, N=64, L=32 and Dt=0.002.

same. Therefore, we proceed to the 3D part of the convergence check with the 128×64 2D
grid.

The number of axial collocations was allowed to vary for the 128×64 (radial by circumfer-
ential) systems. We used 8, 16 and 32 axial points with the L=32 case providing a well-defined
axial variation of the circumferential vorticity with a wavelength of about 1.5, which agrees
quite well with the experimental values of Honji. The vorticity plot is shown in Figure 3.

Calculations for two different time steps, 0.001 and 0.002, were performed for the 128×
64×32 mesh system. The results, not shown here for brevity, indicate that both time steps
produced virtually identical results. In addition, two different outer boundaries, r�=20.09
and 42.5, were examined with r�=42.5 necessary to produce the physically correct drag and
inertia coefficients shown in Table I and discussed later. So, we proceed with a 128×64×32
grid, a time step of 0.002, an outer boundary of 42.5 cylinder radii and a spanwise
computational length of 4.5 cylinder radii.

Table I. Drag and inertia coefficients for different KC values at b=196

CD, exp.a CM, calc.KC CM, exp.aCD, calc.

—1.0 2.15 —2.06
2.152.051.71.362.0

1.32.6 2.08 2.081.11
1.251.163.2 2.052.01

4.0 2.011.971.21.21

a [15].
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Figure 4. The maximum divergence of velocity for KC=1 and b=196.

The issue of these parameters has been re-examined for the higher KC values in this study.
However, only the convergence and stability results for KC=2 and b=196 are presented in
this description of the results.

5.2. KC=1, b=196

Physically, this case is a 2D flow. The calculation will treat the problem as if it were 3D and
perturb the velocity components. If the perturbations are damped, the 2D nature of the flow
is retained and the onset of the Honji instability will not occur.

We use the 120×64×32 grid with Dt=0.002 and r�=42.5. The perturbation to the
velocity is applied from t=0 to t=1. The maximum divergence of the velocity is shown in
Figure 4, where it is observed that the divergence is relatively high during the time that the
perturbation is applied. After the perturbation was removed, the divergence quickly stabilized
to a value oscillating about 2×10−3, which we consider to be satisfactory. After the
perturbation is removed at t=1, the velocity quickly decreases, oscillating about a zero mean,
to a magnitude of approximately 0.0015 after 30 cycles. The isolines of vz (not shown) are
straight lines, having no z dependence. The decrease of the axial velocity to its expected value
of zero and the 2D behavior of vz each infer the 2D nature of the flow.

The contour lines of vz are shown in Figure 5 at t=30.5 (zero velocity) with the black lines
indicating positive vorticity and the grey lines negative vorticity. This map of vz is the same
at all axial positions. Several overlapping regions, the Stokes layer, of alternate sign vorticity
are seen; these are due to the oscillating free-stream flow. At zero velocity, the Stokes layer is
thicker than at maximum velocity and the outer layer is a full sized layer.

Figure 6 shows the inline and transverse force coefficients. The symmetry of the wake at this
low value of KC (=1) is evident in this plot due to the zero transverse force and the purely
sinusoidal behavior of the inline coefficient.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 19–42 (1999)
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Figure 5. Contours lines for the axial vorticity (vz) for KC=1, b=196, and t=30.5. The black lines have positive
vz and the grey lines have negative vz.

From the Fourier method applied to the Morison equation, we obtain a drag coefficient of
CD=2.06 and an inertia coefficient of CM=2.15. The pressure contribution to CD is 0.99 and
the shear stress contribution is 1.07. The inertia coefficient agrees well with the theoretical
values of Stokes [13] and Wang [14]. The drag coefficients are a little higher than the
Stokes–Wang value of 1.87. We attribute this difference to the nonlinear effect that is fully
included in the numerical simulation but was neglected in Stokes and taken as a secondary

Figure 6. Inline and transverse force coefficients for KC=1, b=196.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 19–42 (1999)



Plate 1. Isosurfaces of vu at t=36.25 for KC=2 and b=196; the positive direction of oscillation is the x-direction.

Plate 2. Isosurfaces of vu at t=36.5 for KC=2 and b=196; the positive direction of oscillation is the x-direction.
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Plate 3. Isosurfaces of vu at t=36.75 for KC=2 and b=196; the positive direction of oscillation is the x-direction.

Plate 4. Isosurfaces of vu at t=37 for KC=2 and b=196; the positive direction of oscillation is the x-direction.
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Plate 5. Isosurfaces of vz at t=37 for KC=2 and b=196; the positive direction of oscillation is the x-direction.

Plate 6. Isosurfaces of axial vorticity for KC=3.2, b=196 and t=18.25.
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Plate 7. Isosurfaces of axial vorticity for KC=3.2, b=196 and t=19.
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effect in Wang. Because the flow is inertia-dominated for KC smaller than 4, predicting the
inertia coefficient is much easier. This is the reason for the excellent agreement between
numerical results and experimental results [15].

5.3. KC=2, b=196

When KC is increased to 2 while b remains at 196, the flow becomes unstable to spanwise
disturbances. Distinct 3D flow patterns develop and stabilize after about 20 cycles. Plates 1–4
show the isosurfaces of the circumferential vorticity at dimensionless times of 36.25, 36.5, 36.75
and 37. The circumferential component of vorticity is responsible for the development of the
mushroom-shaped structures observed by Honji [1] and Sarpkaya [2]. The structures shown in
these figures correspond to the outer part of the Stokes layer, although three-dimensionality is
present and is spanwise periodic up to the wall. The magnitude of the circumferential vorticity,
however, is small compared with the axial component. At t=37, the magnitude of vu is 1.7
and the magnitude of vz about 36. Therefore, the primary flow pattern is still 2D, as can also
be seen from Plate 5 for vz at t=37. Although several distinct bumps and valleys are clearly
seen in the isosurface of vz, the flow is dominated by the 2D part. At this KC number, the
primary flow is still symmetric and unseparated.

The structures have stabilized after 20 cycles even though this result is not shown here.
These structures also keep the same relative locations while moving left and right as the flow
direction changes. At peak velocity in the positive direction, Plate 1, the structures are
suppressed a little, apparently because of a thinner Stokes layer at peak velocity. When the
free-stream velocity decreases to zero and the acceleration of the flow is a maximum, we see
slightly expanded structures. This corresponds to the expanded Stokes layer when the velocity
is small. The expansion is due to the vortex-induced motion of fluid when the free-stream is
weak, as we already observed in the case for KC=1. When the flow reverses direction, we see
a similar behavior of the vortical structures at peak free-stream velocity and peak free-stream
acceleration is seen, with reversed directions. In one cycle, the vortical structures do not change
location along the span.

The variations of velocity with time in Figure 7 show that the flow becomes almost exactly
cyclic after 20 cycles with a period with is the same as the free-stream oscillations. Figure 7
shows that the radial velocity differs very little at the two locations shown. These two locations
are not at the same relative points of the axial wave length. Based on this plot and other
velocity plots not shown, we conclude that, after they fully develop, the 3D structures become
steady in the sense that they do not change locations with flow oscillation at KC=2 and
b=196. This is consistent with the observation of Honji [1] that the mushroom-shaped streak
sheets stay at the same location along the span after they develop quickly from the start of
oscillation.

The axial velocity shown in Figure 8 at two axial positions and at u=9p/4 from the
positive x-direction. It is quite clear from the velocity results that the axial velocity is not
damped and that there is an axial variation in the magnitude and direction of the axial velocity
component.

Figure 9 shows the contour lines of axial vorticity (vz) at z=0 and at maximum velocity.
The symmetry of vz is apparent. This plot and others not shown indicate that separation is not
occurring even though there is a well-developed Stokes layer. What is missing to infer
separation is the presence of a region in which fluid demonstrates an excursion from the wall
region [16,17]. This region is not necessarily at the point where vz vanishes, i.e., the point
where the wall shear stress vanishes, as in a steady approach flow.
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Figure 7. Radial velocity at two different locations along the span. The co-ordinates shown are (r, u, z); KC=2 and
b=196.

The length-averaged force coefficient (not shown) was symmetric with a peak of 910 at
KC=2 and b=196. The length-averaged transverse force coefficient (also not shown) was
zero as expected because of the symmetry of the flow field. The interesting feature of the
transverse force coefficient is that its sectional values (at different z) are different from zero

Figure 8. Axial velocity at two locations along the span for KC=2, b=196. The co-ordinates shown are (r, u, z).
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Figure 9. Contours lines for the axial vorticity (vz) for KC=2, b=196 and t=36.25. The black lines have positive
vz and the grey lines have negative vz.

and, in fact, vary at each of the five axial positions shown in Figure 10. This axial variation
of the transverse force coefficient is expected because of the axial variation of the axial
component of velocity.

Figure 10. Sectional transverse force coefficients for KC=2, b=196.
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Figure 11. (a) Contours of axial vorticity on the plane z=0, KC=2.6, b=196 and t=18.25; (b) contours of axial
vorticity on the plane z=0 for KC=2.6, b=196 and t=18.5.

5.4. KC=2.6, b=196

Since we learned from the case for KC=2 and b=196 that the initial development of the
3D flow from random numerical perturbations takes about 20 cycles, we use the flow
condition at a smaller KC number at the ending time for its calculation as the initial condition
for the flow with a higher KC number. A perturbation is applied in the first half cycle of
calculation for the higher KC flow so that the computation can select the appropriate flow.
From the results we show below, it is clear that the stabilization of the new flow state takes
much less time than starting from rest. For KC=2.6, we use the flow condition of KC=2 at
t=36. However, the start of time (t=0) for different KC is always at the time the calculation
for it begins.

Sarpkaya [2] showed that the flow at separation occurs between KC about 2.1 and 2.5 at
b=196, and emphasized that accurate determination of separation and transition are both
very difficult. In our simulation, we found the Stokes layer is still attached to the cylinder for
KC=2.6 and b=196. Figure 11 shows the contour lines of the axial vorticity at z=0 and two
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different times, t=18.25 and 18.75. These two time points represent the maximum velocity of
the free-stream flow in both directions. We see, in the downstream part of the cylinder, the
axial vorticity on the wall changes sign. For steady flows, the vanishing of surface vorticity
(zero shear stress) is the criterion for separation. In unsteady flows, this criterion is not directly
applicable. In fact, for KC=2, a similar sign change of the axial vorticity occurs also. Fluid
particles that are originally in the Stokes layer remain there. Actually, the sign change just
reflects the induced motion of the attached vortices. The region with one sign of vorticity
expands as the flow decelerates and takes the full half of the cylinder when the free-stream has
maximum acceleration and no velocity (not shown). This phenomenon repeats cycle after cycle
while the inner part of the Stokes layer stays attached to the wall and the outer part is
detached by the external flow.

The radial and axial velocities at two symmetrical points in the Stokes layer, r=1.15,
u=p/4 and 7p/4, and z=0, are plotted in Figure 12(a) and (b). The effect of the perturbation
quickly decays and, after about ten cycles of calculation, the new flow state for KC=2.6 is
established, and is larger than in the KC=2 case, not only because of stronger vortex motion
of the primary flow, but also because of stronger 3D motion. Comparing the radial velocity
components in Figures 7 and 12(a) reveals that the asymmetry caused by 3D motion is much
stronger at KC=2.6 than for the KC=2 case. A comparison of the axial velocities at the
same points from Figures 8 and 12(b) shows the influence of the larger KC value; the
asymmetry of the axial velocity is quite evident.

5.5. KC=3.2, b=196

With the increase to KC=3.2, the three-dimensionality becomes very strong. The spanwise
structures depicted by the isosurfaces of the circumferential vorticity encompass the full flow.
At t=19, the magnitude of vu is 7.6 while the magnitude for vz is 41.5. The relative strength
of vu is much larger than the cases with KC=2 and 2.6. The isosurfaces of vz at t=18.25
(Plate 6) and t=19 (Plate 7) further show the strong 3D effects.

At KC=3.2, separation of the Stokes layer occurs. Figure 13 shows that, at t=18.25 when
the free-stream has the maximum positive velocity, the Stokes layer abruptly deviates from the
wall in the downstream part, at both the upper and lower half of the cylinder. When the
acceleration of the flow increases to its maximum value, shown in Figure 14, the Stokes layer
basically reattaches to the cylinder because of the strong favorable pressure gradient imposed
by the free-stream. When the flow reverses directions, the above process repeats itself.

Figures 15 and 16 show the variation of velocity components at r=1.15, u=p/4 and 7p/4,
and z=0 with time. Although these two points are well within the Stokes layer, very strong
three-dimensionality is present at these points. The axial velocity is of the same order of
magnitude as the radial velocity (not shown). The variation of velocity with time is also much
more complex than the unseparated flow cases. The flow is generally cyclic, but obvious
differences exist between cycles that follow each other, apparently due to vortex-induced
velocity effects.

Although three-dimensionality is stronger and separation is present for KC=3.2 and
b=196, the flow is still primarily 2D and inertia-dominated. As Sarpkaya [2] pointed out, the
minimum drag coefficient occurs at a KC value that corresponds to separation. The data of
Bearman et al. [15] also show this phenomenon. In the current numerical simulations, the
minimum drag coefficient (1.11) occurs at KC=2.6. The drag coefficient at KC=3.2 is 1.16,
which is very close to the minimum value. Because it is too expensive computationally to
simulate many cases with small increments of KC so that a precise minimum can be
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determined, and also because the range of uncertainly of the KC value corresponding to the
minimum drag is only 0.6, we choose not to determine precisely the minimum drag coefficient
and the corresponding KC. However, it is clear that the minimum drag is closely related to
separation. After separation, the wider unsteady wake induces a larger pressure drag and
higher dissipation rate, thus drag will increase. At KC=3.2, the pressure contribution to CD

Figure 12. (a) Radial velocity at two symmetrical points r=1.5, u=p/4 (solid line) and 7p/4, and z=0 for KC=2.6
and b=196; (b) axial velocity at two symmetrical points r=1.5, u=p/4 (solid line) and 7p/4, and z=0 for KC=2.6

and b=196.
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Figure 13. Contour lines for axial vorticity at the plane z=0 for KC=3.2, b=196 and t=18.25. Black and grey
lines represent positive and negative vz respectively.

is 0.81 and the shear stress contribution is 0.35. The inertia coefficient is 2.01 with a pressure
contribution of 1.93 and a shear stress contribution of 0.08.

5.6. KC=4, b=196

The flow at KC=4 varies chaotically in time, while small wavelengths in space become
important. The physical flow at KC=4 is already turbulent. The resolution we use in the

Figure 14. Same as Figure 13 except for t=18.5.
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Figure 15. Variation of circumferential velocity with time at two symmetrical locations, r=1.15, u=p/4 (solid line)
and 7p/4, and z=0 for KC=3.2 and b=196.

calculations was not enough to resolve the whole range of scales in turbulence. However, we
believe that the results still show some key features of the transition process, such as the
generation of smaller and smaller spatial and temporal scales.

Figure 16. Variation of axial velocity with time at two symmetrical locations, r=1.15, u=p/4 (solid line) and 7p/4,
and z=0 for KC=3.2 and b=196.
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Figure 17. Contour lines for axial vorticity at the plane z=0 for KC=4, b=196 and r=18.25.

Figure 17 shows the contours of axial vorticity at the plane z=0 at two instants in time.
Separation is now very obvious at the time of maximum free-stream velocity. At the time of
maximum free-stream acceleration, separation is as fully suppressed as in the case for
KC=3.2. Very noticeable small structures are present away from the cylinder. These struc-
tures are present both because the spatial resolution is not adequate for this flow, and thus
numerical oscillations occur, and because at KC=4, smaller spatial structures are a physical
reality. Since the larger vortices do not have numerical breakdown, we believe the numerical
results still reasonably well represent the large scales of the flow.

The temporal variation of velocity is greater and more irregular than for the KC=3.2 case.
There is evidence of a higher harmonic present in the u-component of velocity at KC=4,
compared with KC=3.2 case, as shown in Figure 18(a). The axial velocity is shown in Figure
18(b) where the magnitude of the peaks is seen to have increased by a factor of about three
when KC increased to 4 from 3.2.

The inline and transverse force coefficients are shown in Figure 19, where the beginning of
a transverse force is evident. The difference in inline force at four different equally spaced axial
positions is negligible both in magnitude and phase (although this is not shown here). The
inline force at KC=4 is primarily due to pressure with the pressure contribution, the inline
force coefficient peaking at about 4.8 and the shear stress contribution peaking at about 0.32.
Since the flow is still in the inertia-dominated range, the variation of the inline force is
essentially sinusoidal. The drag coefficient is 1.21, compared with the value of 1.5 from
Bearman et al. [15]. The pressure contribution is 0.93 and the shear stress contribution is 0.28.
The inertia coefficient is 1.97, compared with the value of 2.0 from Bearman et al., with the
pressure contribution at 1.89 and the shear stress contribution at 0.08.

Table I shows how the calculated values of drag (CD) and inertia (CM) coefficients compare
with the experimental values of Bearman et al. [15]. Very good agreement between the
calculated and experimental values is noted for the three highest values of KC. At KC=2, the
inertia coefficients compare reasonably well but the calculated drag coefficient is about 20%
lower than the experimental value.
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6. SUMMARY

This representation of a sinusoidal flow has allowed the capture of the 3D development of the
flow as the value of KC increases from 1 to 4 at b=196.

When KC=1, the flow is 2D, agreeing well with experimental observations. Clear spanwise
structures, which are pairs of counter-rotating circumferential vorticity structures, develop at
KC=2. These structures are close to the cylinder and periodic along the span with a

Figure 18. (a) Variation of circumferential velocity at r=1.15, u=p/4 and z=0 with time for KC=4 and b=196;
(b) same as (a) except for axial velocity.
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Figure 19. Inline and transverse force coeffiicients for KC=4 and b=196.

wavelength of about 0.75 diameter. These structures do not change locations along the span
with time, although they expand or extract with changing free-stream velocity. The centers of
the pairs appear on the cross-stream sides of the cylinder alternatively, which explains the
alternative mushroom-shaped streak sheets observed when the Honji instability occurs. When
KC is increased to 2.6, the three-dimensionality is stronger and the spanwise structures extend
into the external flow along the direction of oscillating. For both KC=2 and 2.6, the primary
flow is close to symmetrical in the direction of oscillation, and separation is not present for
these flows.

The spanwise structures are not as distinctly shaped for KC=3.2 as for flows with the two
smaller KC numbers. More spanwise modes with shorter wavelengths and more temporal
modes with both superharmonics and subharmonics appear. Separation of the Stokes layer
occurs and CD has the minimum value among the flows studied. This confirms the experimen-
tal observations that the minimum value of CD is when separation occurs. We attribute the
reason to an increased pressure difference and higher viscous dissipation because of the
expansion of the area of vortical activities associated with the occurrence of separation.

The flow at KC=4 is in an almost chaotic state with a wide range of temporal modes
present. Separation is more obvious and the drag coefficient is higher than at KC=3.2. The
spanwise structures are not regular either along the span or with time. More modes with
smaller spanwise wavelengths appear. The intermittent increase of velocity is more frequent
than the flow at KC=3.2. It is concluded that the picture of transition to turbulence is the
following: the three-dimensionality of the flow generates regions in the flow with concentrated
vortices in some part of a cycle of oscillation. With higher KC, these localized and intermittent
regions become stronger and last longer. These regions occur first at the outer part of the
viscous region, and the reversing of flow induces fluctuations in the inner part of the viscous
region. For KC high enough, the fluctuations of velocity become chaotic and the flow
undergoes transition to turbulence in the regions of concentration of vorticity. Finally, when
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KC is even higher, the turbulent spots are sustained for the whole cycle of oscillation and
turbulence transition is induced in the other part viscous region. Flow reversal will probably
induce transition of the inner part of the viscous region at about the same time as the outer
part. This is different from the steady approach flows, where the wake becomes turbulent at
Re about 400 and the boundary layer is laminar until Re about 2×105.

On a loose sense of average over the span of the cylinder, the flows up to KC=4 are all
symmetric. The total transverse force coefficient is very close to zero for KCB4. For KC=4,
a small transverse force is generated and is present for several cycles. The transverse force
vanishes and then reappears for several more cycles and then vanishes again. There is
apparently a long term modulation causing this effect. However, this was not examined
further. The difference in the sectional transverse force coefficients is present when the Honji
instability occurs and the coefficients increase in magnitude with increasing KC. Correspond-
ing to the small transverse force, there is no vortex shedding for these flows.
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